軸承套圈端面缺陷在線視覺(jué)檢測(cè)的研究與實(shí)現(xiàn)
發(fā)表時(shí)間:2023-07-25 11:28:45

針對(duì)軸承生產(chǎn)企業(yè)套圈生產(chǎn)過(guò)程中普遍存在端面缺陷的問(wèn)題與人工目檢的現(xiàn)狀,提出了基于機(jī)器視覺(jué)的軸承套圈端面缺陷在線檢測(cè)方法。首先,對(duì)套圈圖像預(yù)處理后進(jìn)行邊緣檢測(cè),采用四連通域定位套圈端面區(qū)域;其次,采用*小二乘法擬合端面輪廓以判別外形缺陷,采用極坐標(biāo)變換將套圈環(huán)形端面拉伸成矩形,采用Sauvola局部二值化算法對(duì)矩形圖進(jìn)行缺陷分割,并通過(guò)坐標(biāo)系反變換與雙線性插值法將缺陷圖轉(zhuǎn)換回環(huán)形圖;*后,根據(jù)提取缺陷的圖像特征完成缺陷的識(shí)別與分類?,F(xiàn)場(chǎng)測(cè)試表明,套圈端面檢測(cè)系統(tǒng)的整體識(shí)別準(zhǔn)確率達(dá)98.6%。
軸承是保證機(jī)械裝備回轉(zhuǎn)精度不可或缺的基礎(chǔ)部件,軸承套圈在經(jīng)過(guò)平面磨削加工后,其端面可能依然存在鍛廢、大小邊、磕碰傷、車廢、磨傷、黑皮等外觀缺陷。如果套圈端面存在缺陷,其作為外圓無(wú)心磨等后序工位的定位面,勢(shì)必影響加工精度和軸承的回轉(zhuǎn)精度,可能導(dǎo)致軸承使用過(guò)程中產(chǎn)生噪聲和振動(dòng),從而加速磨損,甚*引發(fā)機(jī)器故障。另一方面,端面缺陷套圈進(jìn)入后續(xù)工序加工后剔除或成品進(jìn)入市場(chǎng)后召回,都會(huì)給企業(yè)帶來(lái)物資與人力成本的極大浪費(fèi)。因此,必須在平面磨削加工后將缺陷品剔除,避免流入后續(xù)工序。
目前,大多企業(yè)仍憑借質(zhì)檢員肉眼與主觀經(jīng)驗(yàn)對(duì)套圈進(jìn)行鑒定與判斷,質(zhì)檢結(jié)果易受人為因素影響,檢驗(yàn)標(biāo)準(zhǔn)難以保持一致,穩(wěn)定性差且易漏檢。機(jī)器視覺(jué)具有精度高、效率高、實(shí)時(shí)性好等優(yōu)點(diǎn),是替代人工檢測(cè)的有效方法,例如:文獻(xiàn)[2]采用改進(jìn)Otsu方法進(jìn)行閾值化處理,利用八連通域標(biāo)記識(shí)別技術(shù)實(shí)現(xiàn)了軸承端面的非接觸檢測(cè);文獻(xiàn)[3]利用紋理單元解決了空氣軸承表面變化的光照強(qiáng)度影響圖像采集的問(wèn)題。
在上述研究的基礎(chǔ)上,本文提出一種軸承套圈端面缺陷在線視覺(jué)檢測(cè)方法,采用四連通域、種子填充算法定位檢測(cè)區(qū)域,Sauvola局部二值化算法進(jìn)行圖像分割,并基于多特征的外觀缺陷識(shí)別方法判別缺陷。
1.光源選擇與檢測(cè)區(qū)域定位
1.1 光源選擇
光源是視覺(jué)檢測(cè)系統(tǒng)不可或缺的組成部分,直接關(guān)系到成像質(zhì)量。良好的照明方式可以凸顯目標(biāo)區(qū)域的特征,減輕圖像處理工作量。
端面缺陷檢測(cè)成像面為圓環(huán)形金屬端面,具有一定的鏡面發(fā)射效應(yīng),且被測(cè)套圈尺寸跨度大,故采用球積分漫反射無(wú)影照明方式,照射面積大,光線集中且照射均勻,不會(huì)形成鏡面反射.
1.2 圖像預(yù)處理
圖像捕獲過(guò)程中存在的噪聲與干擾會(huì)降低圖像質(zhì)量,增加后續(xù)邊緣檢測(cè)與圖像分割的難度因此,需要對(duì)原始圖像進(jìn)行一定的預(yù)處理,消除圖像中的噪聲與干擾。由于端面環(huán)形區(qū)域外為背景區(qū)域,灰度值較低,均值濾波處理后的環(huán)形區(qū)域明暗對(duì)比變?nèi)酰瑘D像也變得模糊;中值濾波處理后的端面邊緣部分被黑色區(qū)域影響,邊緣細(xì)節(jié)丟失;而高斯濾波由于加權(quán)平均的特點(diǎn),在去除噪聲的同時(shí)可以很好地保留圓環(huán)及其邊緣的細(xì)節(jié)。針對(duì)套圈端面區(qū)域與背景區(qū)域?qū)Ρ容^大,并且需要檢測(cè)出細(xì)小缺陷的特點(diǎn),選取大小為3×3,標(biāo)準(zhǔn)差為1的濾波窗口進(jìn)行高斯濾波。
1.3 邊緣檢測(cè)
邊緣檢測(cè)是通過(guò)識(shí)別圖像中亮度發(fā)生明顯變化的部分確定需要識(shí)別圖像邊緣的位置。區(qū)域內(nèi)灰度突變反映了圖像的重要變化,是價(jià)值極高的圖像特征。針對(duì)本研究,邊緣檢測(cè)可以很好地完成套圈端面區(qū)域與背景區(qū)域的劃分,更容易實(shí)現(xiàn)檢測(cè)區(qū)域的定位,為下一步處理做好準(zhǔn)備工作。
常用的邊緣檢測(cè)算子包括Canny 算子、Sobel算子與Laplacian算子。Sobel算子對(duì)噪聲和灰度漸變的邊緣適應(yīng)能力較強(qiáng),但對(duì)圖像有平滑處理功能,適用于對(duì)精度要求不高的場(chǎng)合;Laplacian算子對(duì)噪聲的抗干擾能力較差,會(huì)將無(wú)效像素視為邊緣點(diǎn),但會(huì)突出邊緣的對(duì)比度,適用于圖像銳化場(chǎng)景;Canny算子具備錯(cuò)誤率低,定位能力強(qiáng),邊緣像素響應(yīng)單一等特性,被稱為*優(yōu)秀的邊緣檢測(cè)器。Canny算子的抗噪聲干擾能力更強(qiáng),對(duì)邊緣的定位能力較強(qiáng),能檢測(cè)出真正的弱邊緣。因此,本文選取高低閾值比率為2:1的Canny 算子提取套圈端面圓環(huán)的2條輪廓。